segunda-feira, 13 de fevereiro de 2012

Operações com números complexos

A construção dos números complexos passou por diversos obstáculos, que levaram em média 300 anos para serem vencidos, desenvolvendo, assim, teorias referentes a esse conjunto numérico.

A origem de i ao quadrado igual a -1


No estudo dos números complexos deparamo-nos com a seguinte igualdade: i2 = – 1. 

A justificativa para essa igualdade está geralmente associada à resolução de equações do 2º grau com raízes quadradas negativas, o que é um erro. A origem da expressão i2 = – 1 aparece na definição de números complexos, outro assunto que também gera muita dúvida. Vamos compreender o motivo de tal igualdade e como ela surge.


Primeiro, faremos algumas definições.

1. Um par ordenado de números reais (x, y) é chamado de número complexo.
2. Os números complexos (x1, y1) e (x2, y2) são iguais se, e somente se, x1 = x2 e y1 = y2.
3. A adição e a multiplicação de números complexos são definidas por:

(x1, y1) + (x2, y2) = (x1 + x2 ,  y1 + y2)

(x1, y1)*(x2, y2) = (x1*x2 – y1*y2 ,  x1*y2 + y1*x2)

Exemplo 1. Considere z1 = (3, 4) e z2 = (2, 5), calcule z1 + z2 e z1*z2.
Solução:
z1 + z2 = (3, 4) + (2, 5) = (3+2, 4+5) = (5, 9)
z1*z2 = (3, 4)*(2, 5) = (3*2 – 4*5, 3*5 + 4*2) = (– 14, 23)

Utilizando a terceira definição fica fácil mostrar que:
(x1, 0) + (x2, 0) = (x1 + x2, 0)
(x1 , 0)*(x2, 0) = (x1*x2, 0)

Essas igualdades mostram que no que diz respeito às operações de adição e multiplicação, os números complexos (x, y) se comportam como números reais. Nesse contexto, podemos estabelecer a seguinte relação: (x, 0) = x.

Usando essa relação e o símbolo i para representar o número complexo (0, 1), podemos escrever qualquer número complexo (x, y) da seguinte forma:

(x, y) = (x, 0) + (0, 1)*(y, 0) = x + iy → que é a chamada de forma normal de um número complexo.

Assim, o número complexo (3, 4) na forma normal fica 3 + 4i.

Exemplo 2. Escreva os seguintes números complexos na forma normal.

a) (5, – 3) = 5 – 3i
b) (– 7, 11) = – 7 + 11i
c) (2, 0) = 2 + 0i = 2
d) (0, 2) = 0 + 2i = 2i

Agora, observe que chamamos de i o número complexo (0, 1). Vejamos o que ocorre ao fazer i2.
Sabemos que i = (0, 1) e que i2 = i*i. Segue que:
i2 = i*i = (0, 1)*(0, 1)
Utilizando a definição 3, teremos:
i2 = i*i = (0, 1)*(0, 1) = (0*0 – 1*1, 0*1 + 1*0) = (0 – 1, 0 + 0) = (– 1, 0)

Como vimos anteriormente, todo número complexo da forma (x, 0) = x. Assim,
i2 = i*i = (0, 1)*(0, 1) = (0*0 – 1*1, 0*1 + 1*0) = (0 – 1, 0 + 0) = (– 1, 0) = – 1.
Chegamos à famosa igualdade i2 = – 1.

Os números complexos são escritos na sua forma algébrica da seguinte forma: a + bi, sabemos que a e b são números reais e que o valor de a é a parte real do número complexo e que o valor de bi é a parte imaginária do número complexo.

Podemos então dizer que um número complexo z será igual a a + bi (z = a + bi).

Com esses números podemos efetuar as operações de adição, subtração e multiplicação, obedecendo à ordem e características da parte real e parte imaginária.


Adição

Dado dois números complexos quaisquer z1 = a + bi e z2 = c + di, ao adicionarmos teremos:

z1 + z2
(a + bi) + (c + di)

a + bi + c + di

a + c + bi + di

a + c + (b + d)i

(a + c) + (b + d)i

Portanto, z1 + z2 = (a + c) + (b + d)i.

Exemplo:
Dado dois números complexos z1 = 6 + 5i e z2 = 2 – i, calcule a sua soma:

(6 + 5i) + (2 – i)
6 + 5i + 2 – i
6 + 2 + 5i – i
8 + (5 – 1)i
8 + 4i

Portanto, z1 + z2 = 8 + 4i.

Subtração

Dado dois números complexos quaisquer z1 = a + bi e z2 = c + di, ao subtraímos teremos:

z1 - z2
(a + bi) - (c + di)

a + bi – c – di

a – c + bi – di

(a – c) + (b – d)i

Portanto, z1 - z2 = (a - c) + (b - d)i.

Exemplo:
Dado dois números complexos z1 = 4 + 5i e z2 = -1 + 3i, calcule a sua subtração:

(4 + 5i) – (-1 + 3i)
4 + 5i + 1 – 3i
4 + 1 + 5i – 3i
5 + (5 – 3)i
5 + 2i

Portanto, z1 - z2 = 5 + 2i.

Multiplicação

Dado dois números complexos quaisquer z1 = a + bi e z2 = c + di, ao multiplicarmos teremos:

z1 . z2
(a + bi) . (c + di)

ac + adi + bci + bdi2
ac + adi + bci + bd (-1)
ac + adi + bci – bd
ac - bd + adi + bci
(ac - bd) + (ad + bc)i

Portanto, z1 . z2 = (ac + bd) + (ad + bc)I.

Exemplo:

Dado dois números complexos z1 = 5 + i e z2 = 2 - i, calcule a sua multiplicação:

(5 + i) . (2 - i)
5 . 2 – 5i + 2i – i2
10 – 5i + 2i + 1
10 + 1 – 5i + 2i
11 – 3i

Portanto, z1 . z2 = 11 – 3i.

Divisão

Ao dividirmos dois números complexos devemos escrevê-los em forma de fração e multiplicarmos o numerador e o denominador pelo conjugado do denominador, veja como:

Dado dois números complexos z1 e z2, para efetuarmos a divisão dos dois devemos seguir a seguinte regra:
z1 : z2 = z1  .  
 z2 
               z2   
 z2 

Nenhum comentário:

Postar um comentário

Comenta ae! se gostou, ou não...